Randomized Adaptive Spatial Decoupling
For Large-Scale Vehicle Routing with Time Windows

Russell Bent and Pascal Van Hentenryck
Brown University Box 1910

Abstract

In recent years, the size of combinatorial applications
and the need to produce high-quality solutions quickly
have increased steadily, providing significant challenges
for optimization algorithms. This paper addresses this
issue for large-scale vehicle routing problems with time
windows, a class of very difficult optimization problems
involving complex spatial and temporal dependencies.
It proposes a randomized adaptive spatial decoupling
(RASD) scheme for vehicle routing with time windows
in order to produce high-quality solutions quickly. Ex-
perimental results on hard instances with 1,000 cus-
tomers and 90 vehicles show that the RASD scheme,
together with large neighborhood search, significantly
improves the quality of the solutions under time con-
straints. Interestingly, the RASD scheme, when al-
lowed to run longer, also improves the best available
solutions in almost all the tested instances.

Introduction

The scale of optimization problems and the need
for finding high-quality solutions quickly has grown
steadily in recent years as optimization systems are in-
creasingly deployed in operational, integrated settings.
This trend generates significant issues for optimization
research, changing its focus from finding optimal so-
lutions to delivering high-quality solutions under time
constraints. This paper examines the underlying algo-
rithmic issues in the context of multiple vehicle routing
with time windows (VRPTWs), which arise in many
transportation applications including courier services,
the scheduling of repairs in telecommunication compa-
nies, and supply-chain logistics. VRPTWs are partic-
ularly interesting in this respect, since instances with
even 100 customers have not been solved optimally de-
spite intense research. Hence finding high-quality so-
lutions under time constraints for problems with 1,000
customers is a significant challenge.

Spatial and temporal decouplings (Hunsberger 2002)
are natural avenues for speeding up optimization al-
gorithms. Unfortunately they do not apply easily to
large-scale VRPTWs which involve complex spatial and

Copyright (© 2007, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

temporal dependencies. To remedy this limitation, this
paper proposes a randomized adaptive spatial decou-
pling (RASD) scheme which iteratively selects random
subproblems that can be optimized independently and
reinserted into an existing solution. The decouplings
obtained by the RASD scheme are adaptive since they
depend on the current solution, not simply the instance
data. The RASD scheme is also independent from the
underlying optimization algorithm.

The RASD scheme was evaluated on large VRPTW
instances with 1,000 customers and about 90 vehicles.
The experimental results indicate that RASD(A), the
RASD scheme with algorithm A to optimize the sub-
problems, produces significant improvements in solu-
tion quality over algorithm A, when both algorithms
must produce solutions within time constraints. More-
over, and perhaps surprisingly, the RASD scheme
found new best solutions on almost all tested instances
when allowed to run for an hour.

This paper reviews VRPTWs, their decouplings, and
the difficulty in finding good decompositions. It then
presents the RASD scheme, alternative algorithms, ex-
perimental results, and related work.

VRPTWs

A VRPTW instance is specified by the set C of cus-
tomers, the set V of vehicles, and a depot d. Elements
of Sites = C U {d} are called sites.

Every customer ¢ has a demand ¢. > 0 and a service
time s, > 0. The travel cost between sites ¢ and j is ¢;;.
Each customer ¢ has a time window [e., [.] constraining
when it can be visited, where e, and [. represent the
earliest and latest arrival times. Vehicles must arrive
at customer c¢ before the end of the time window /..
They may arrive early but they have to wait until time
e. to be serviced. The depot also has a time window
specifying when the vehicles may start and must return.
Each vehicle has a capacity Q.

Solutions are specified in terms of vehicle routes and
routing plans. A vehicle route starts from the depot,
visits a number of customers at most once, and returns
to the depot. It is thus a sequence (d,c1,...,cp,d) or
(c1,...,cp) for short, where all ¢; are different. The cus-
tomers of a route r = {(cy,...,cp), denoted by cust(r),

is the set {c1,...,c,}. The size of a route, denoted by
|r|, is |cust(r)|]. The demand of a route, denoted by
q(r), is the sum of the demands of its customers. A
route satisfies its capacity constraint if ¢(r) < Q. The

travel cost t(r) of a route r = {(cq,...,c,) is the cost of
visiting all its customers.
A routing plan is a set of routes {r, | v € V} in

which every customer is visited exactly once. Observe
that a routing plan assigns a unique earliest arrival time
a. for each customer c. It also assigns a unique return
time a(r) to the depot for each route 7.

A solution to the VRPTW is a routing plan o satis-
fying the capacity and time window constraints, i.e.,

Vreo: q(r) <Q & a(r) <ly AN VceC:a.<l,.

The size |o| of a routing plan o is the number of non-
empty routes in 0. The VRPTW problem consists of
finding a solution ¢ which minimizes a lexicographic
function consisting of the number of vehicles and the
total travel cost, i.e., f(o) = (|o|, >, ¢, t(r)). Modern
algorithms for the VRPTW are organized in two stages,
first minimizing the number of vehicles and then mini-
mizing travel distance.

VRPTW Decouplings

This paper aims at finding decouplings to speed up the
solving of large-scale VRPTWs. The goal of the de-
couplings is to decompose a VRPTW into subproblems
that can be solved independently. More precisely, a de-
coupling of a VRPTW P = (C,V) is a set of VRPTWs
{P1=(C1,V1),...,Pn = (Cn,Vyn)} such that

[] {Cl, ..
o {Vy,...,V,} is a partition of V;
o P; (1 <i<n)is feasible.

Each subproblem P; in a VRPTW decoupling can then
be solved independently to obtain a routing plan. The
resulting plans o; can be smoothly integrated into a
routing plan o = {r | r € 0; & 1 < i < n} for P, since
they do not share customers or vehicles. Similarly, given
a routing plan ¢ for P, the routing plan for problem P;
is obtained by selecting in o the routes of the vehicles
in V, i.e., PROJECT(P;,0) ={ry, €0 | v € V;}.

Decoupling VRPTWs is Difficult

Because of the spatial and temporal nature of
VRPTWs, finding decouplings seems a natural way to
speed up the solution to large-scale instances. Indeed,
spatial decouplings could exploit the geographical clus-
tering of customers. Similarly, temporal decouplings
may exploit the time windows of the customers. Un-
fortunately, these two aspects of VRPTWs often con-
flict, making it difficult to obtain spacial and temporal
decouplings. Consider Figure 1 which depicts a high-
quality solution to an instance with 1,000 customers
and 90 vehicles. Even knowing this high-quality solu-
tion, there is no obvious spatial decoupling: some ve-
hicles operate in relatively narrow regions, while others

.,Cn} is a partition of C;

Figure 1: The Difficulty in VRPTW Decouplings

cover a wide area. The right part of Figure 1 shows
only the red customers and their vehicles; it illustrates
that, even in high-quality solutions, vehicles may travel
over a large region. Hence static spatial decouplings
are hard to find and may not produce high-quality so-
lutions. Moreover, each vehicle in high-quality solutions
often serves customers with diverse (tight or loose) time
windows, making temporal decouplings difficult to find.
One might argue that VRPTW decouplings are too
strong and other decompositions, allowing vehicles to
be shared across spacial regions, should be consid-
ered. The difficulty then becomes how to recompose
routes from the subproblems. Because of time windows
and because of the fixed size of the fleet, such recom-
positions are typically difficult and little success was
achieved using such an approach. The RASD scheme
alleviates these difficulties by taking a more adaptive
approach, deriving decouplings dynamically using both
spacial information and the routing plan at hand.

The RASD Scheme
The RASD scheme is based on two main principles:

1. Starting from plan oy, it produces a sequence of plans
o1,...,05 such that f(og) > f(o1) > ... > f(oj).

2. At step 4, the scheme uses 0;_1 to obtain a decoupling
(P,, Ps) of P with projected plan o, and o,. It reop-
timizes P, to obtain ¢} and the new plan o; = o Uos.

The decoupling is spatial: it views the customer region
as a circle and randomly select a wedge W to define
P,. Unfortunately, as mentioned earlier, a wedge does
not yield a decoupling in general, since some vehicles
serving customers inside W may also serve customers
outside the wedge. To remedy this problem, the RASD
scheme proceeds in two steps. First, it collects the set
of vehicles V, serving customers in W in the current
plan o. Second, it defines C, as all customers served
in ¢ by the vehicles in V,, resulting in the subproblem
Po = (Co,V,). The “stable” subproblem Py is defined
as Ps = (C\Co, V\ Vp).

It remains to specify how to choose the wedge W.
The idea is not to use wedge size only for the decoupling:
Indeed some regions may have higher customer densities
than others, leading to subproblems of very different
nature for the same wedge size. Instead the the RASD
scheme aims at producing problems with roughly the

0 300 600 90 1200 1500 1800 2100 2400 2700 3000 3300 3600

SubProblem Scroll) Problem Name: |RCL.10.1 Instance Prefix: wedge-200- _ Instance Postfix

0 300 600 90 1200 1500 1800 2100 2400 2700 3000 3300 3600

SubProblem Scroll) Problem Name: RCL.10.1 Instance Prefix: wedge-200- Instance Postix:

Figure 2: The First Decoupling of RASD.

same number C of customers. It first chooses the lower
angle « of the wedge randomly. It then selects the upper
angle § as the smallest angle greater than « producing
a wedge with at least C' customers.

Figures 2 and 3 depict the behavior of the RASD
scheme visually. Figure 2 shows the initial plan o¢ (top
left) and the plan oy (top right) after the first decou-
pling and optimization. The customers in the subprob-
lem P, are in red, the remaining ones in blue. The bot-
tom part of Figure 2 shows the projected solution o,
for subproblem P, (bottom left) and its reoptimization
o’ (bottom right). As can be seen, the first subproblem
is quite spread out, illustrating the difficulty in finding
good decompositions. Figure 3 (top) shows the decou-
pling obtained after 5 minutes of execution. Here the
decoupling is much nicer, the RASD solution after 5
minutes, being already of high-quality. Figure 3 (bot-
tom) depicts the projected plan for subproblem P, and
its reoptimization for that decoupling.

The RASD scheme is depicted in Figure 4. The
core of the algorithm is in lines 4-6 which decouple
the VRPTW (line 4), reoptimizes subproblem P, us-
ing algorithm 4 and the projected routing plan o, for
P, (line 5), and reinsert the new optimized subplan o
to obtain the new solution (line 6). These main steps
are repeated until the time limit is reached. The de-
coupling is given in lines 10-15. The RASD scheme
selects a random wedge W (line 11), collects all vehi-
cles serving a customer in the wedge (line 12), and all
the customers served by these vehicles (line 13). The
customers and vehicles so obtained define the first sub-
problem and the other subproblem consisting of the re-
maining customers and vehicles (line 14). The wedge

Vehicles 90 Travel Distance 49048.0

0 300 600 90 1200 1500 1800 2100 2400 2700 3000 3300 3600

SubProblem Scroll) Problem Name: RCL.10.1 Instance Prefix: wedge-200- Instance Postfix

666 Vehicle Routing Decomposition Vi

Vehicles 90 Travel Distance 49048.0 Vehicles 90 Travel Distance 48899.5

0 300 600 90 1200 1500 1800 2100 2400 2700 3000 3300 3600

SubProblem Scroll) Problem Name: RCL.10.1 Instance Prefix: wedge-200- Instance Postfix

Figure 3: The Decoupling of RASD After 5 Minutes.

selection is given in lines 16-22. The lower angle « is
first chosen randomly (line 17). The second angle
is chosen such that the wedge (a,) contains at least
N customers (a parameter of the implementation) and
is the smallest such wedge. In other words, any other
wedge (o,) with v < 8 does not contain N customers.

Alternative Algorithms

This section describes some alternative schemes to jus-
tify some of the design decisions underlying RASD. The
first alternative, the SPASD scheme depicted in Fig-
ure 5, starts by partitioning the customer region with
k wedges W1, ..., Wy. It then considers each wedge in
sequence, performing the decoupling and optimization
for each of them once. The SPASD scheme guarantees
that all regions are included in at least one optimization
and is still adaptive in the sense that the decouplings
depend on the current routing plan. Its main inconve-
nient is to consider each region only once, which is a
significant drawback as discussed later.

The second alternative, the MPASD scheme de-
picted in Figure 6, executes the core of the SPASD
algorithm multiple times. It can be viewed as a sys-
tematic version of the RASD scheme with the guaran-
tee that all regions will be covered by multiple optimiza-
tions. It serves to evaluate the impact of randomization
which contributes to the simplicity of RASD.

Experimental Results
This section presents the experimental results primar-
ily on the class RC1 of benchmarks for 1,000 cus-
tomers. These benchmarks, which are available at
www.top.sintef .no/vrp/benchmarks.html, contain a

function RASD(A, 09) {

o — 00;

repeat
(P,, Ps) < DECOUPLE(P,0);
o} — A(P,,PROJECT(P,,0));
o «— 0% U PROJECT(Ps, 0);

until time limit

return o;

CHONIAE LN

}

10. function DECOUPLE(P, o) {

11. W « SELECTWEDGE(P,0);

12 Vo~ {veV | cer,:cliesin W}
13, Co — Uyey, cust(ry);

14. return {(C,,V,),(C\ Co, V\ Vo) };

15. }

16. function SELECTWEDCGE(P, o) {
17. select a € [0,359];
18. select § > «a such that the wedge W = («,)

19. (a) contains at least N customers;

20. (b) is the smallest wedge satisfying (a);
21. return W;

22. }

Figure 4: The RASD Scheme for VRPTW Decouplings

mix of loose and tight time windows and are represen-
tative of other problem classes. Results on classes R
and C show similar behaviors for finding high-quality
solutions quickly and finding new best solutions. Recall
that the difficulty in these problems, once two-stage al-
gorithms are considered, is mostly in optimizing travel
distances. Hence the experimental results mostly fo-
cus on this second stage, and uses a solution with the
minimal number of vehicles from the first phase. The
experimental results use the large neighborhood search
(LNS) (Shaw 1998) for algorithm A. LNS is one of the
most effective algorithmd for optimizating travel dis-
tances; it also has the benefits of easily accommodating
side constraints, which is important in practical imple-
mentations. Some results for the first phase are also
reported using ejection chains and simulated anneal-
ing. The experiments report the solution quality under
various time constraints (e.g., 2.5, 5, 10, 15, ... min-
utes). Each reported result is the average of 50 runs on
an AMD Athlon Dual Core Processor 3800.

Benefits of RASD Table 1 describes the solution
quality under various time constraints for LNS and
RASD(LNS). Each column describes a RC1 instance
with 1000 customers and 90 vehicles. The clusters of
rows consider various time constraints: 1, 2.5, 5, and
10 minutes. The row BK specifies the travel distance
of the best known solution (prior to this research). The
rows %Gap describes the improvement in solution qual-
ity of RASD(LNS) in terms of the best known solution

function SPASD(A, 09) {

0 < 00;

select random wedges W1, ..., Wy;

fori=1tok
(Ps, Ps) < DECOUPLEFORWEDCE(P,0,W;);
ok «— A(P,, PROJECT(P,, 0));
o «— o U PROJECT(Ps, 0);

return o;

LTI E W

10. function DECOUPLEFORWEDGE(P,o,W) {
11. V,«—{veV | Jcer,:cliesin W};
12. Co — Uyey, cust(ry);
13. return {(C,,V,), (C\ Co, V\ Vo)};

}

Figure 5: The SPASD Scheme for VRPTWs

function MPASD(A, g9) {
0 — 0p;
repeat
select random wedges Wy, ..., Wg;
fori=1to k
(P,,Ps) < DECOUPLEFORWEDGE(P,0,W;);
o} — A(P,, PROJECT(P,, 0));
o «— o U PROJECT(Ps,0);
until time limit
return o;

}

Figure 6: The MPASD Scheme for VRPTWs

CONNTIGT A WWN

and is given by 100(LNS — BK)/(RASD(LNS) — Bk).
RASD(LNS) is run with N = 200, i.e., the wedge
must contain at least 200 customers. The results show
that RASD(LNS) produces significant improvements
in solution quality under time constraints. In average,
it produces improvements of 35%, 29%, 17%, and 6%
when the time constraints require solutions to be found
within 1, 2.5, 5, and 10 minutes respectively. Figure 7
depicts the typical behaviour of LNS and RASD(LNS)
on one of the benchmarks. The figure shows the dra-
matic improvements in solution quality under time con-
straints. It also shows that RASD(LNS) still domi-
nates LNS when both algorithms run for an hour.

New Best Solutions RASD(LNS) was also instru-
mental in improving the best known solution for these
benchmarks when allowed to run for an hour. Ta-
ble 2 describes the previous best known solutions, the
best solutions found during our experiments, and the
value N used to obtain these solutions. These im-
provements are significant, can reach about 3%, and
are typically obtained for small values of N (few cus-
tomers in the wedges). It certainly interesting to ob-
serve that RASD(LNS) is also effective in finding very
high-quality solutions when given more time. On the
instances of class R, RASD(LNS) found four new best

[BK [47143.9 | 44906.6

[43782.6 | 41917.1 | 47632.3 | 46391.6 |

46157.7 | 45585.1 | 45405.5 | 450416 |

LNS (1) 70994.1 | 73614.3 | 77136.2 | 74131.2 | 69651.2 | 70753.1 | 70169.6 | 70196.6 | 69670.2 | 70730.8
RASD (1) 55974.2 | 54404.6 | 54210.1 | 53357.3 | 55723.4 | 57149.8 | 58179.0 | 55573.0 | 55952.7 | 55781.7
%Gap (1) 31.8 42.77 52.36 49.55 29.24 29.32 25.97 32.07 30.21 33.18
LNS (2.5) 62113.4 | 62727.3 | 64174.0 | 60959.1 | 61049.5 | 61782.1 | 61041.0 | 61064.6 | 60510.6 | 61002.4
RASD (2.5) | 50006.9 | 47211.7 | 46218.4 | 45436.7 | 49525.3 | 49758.4 | 49590.0 | 48986.9 | 48959.0 | 48658.0
%Gap (2.5) 25.6 34.55 41.01 37.03 24.19 25.97 24.80 26.49 25.44 27.40
LNS (5) 55917.0 | 62727.3 | 54918.4 | 51958.0 | 55337.1 | 55674.0 | 54824.1 | 54700.8 | 54133.2 | 54127.5
RASD (5) 48254.1 | 47211.7 | 44739.4 | 43891.1 | 48036.4 | 48047.4 | 47723.1 | 47277.4 | 47303.0 | 46902.9
%Gap (5) 15.12 20.29 23.24 19.24 15.32 16.43 15.38 16.28 15.04 16.03
LNS (10) 51032.9 | 55170.6 | 47557.0 | 45599.5 | 50252.0 | 50589.7 | 49794.9 | 49331.2 | 48994.2 | 48655.9
RASD (10) | 48019.7 | 46057.6 | 44116.4 | 43891.1 | 47418.3 | 47420.9 | 46906.6 | 46493.7 | 46484.1 | 46088.5
%Gap (10) 5.89 7.83 7.85 5.59 5.94 6.83 6.25 6.22 5.52 5.70
Table 1: Solution Quality Under Time Constraints.
RC1_10 1 2 3 4 5 6 7 8 9 10
BK 47143.9 | 44906.6 | 43782.6 | 41917.1 | 47632.3 | 46391.6 | 46157.7 | 45585.1 | 45405.5 | 45041.6
RASD | 46747.9 | 44543.7 | 42979.4 | 42053.8 | 46169.3 | 45961.4 | 45495.4 | 44955.3 | 44955.3 | 44587.9
N 150 100 50 50 200 150 100 50 150 50
Table 2: Best Solutions Found Within an Hour.
RC1_10_1 RC1_10_5
] e

P i

g 53000 | -B-RASD % 52000 \ :;gg

8 51000 o LNS —O-LNS

E

e
i =1 .7.7~/’{7— —

[- m—

10 20 30 40 50 60
Minutes

Figure 7: Benefits of RASD on RC1_10_1.

solutions, including a 10% improvement on R1.10_2.

The Impact of the Wedge Size Figure 8 depicts
the impact of the wedge size N on solution quality for
RC1.10.5 (other problems show similar results) for up
to 15 minutes. In general, smaller wedge sizes give
better results although the difference are not substan-
tial. Larger wedge sizes (e.g., N = 400) are sometimes
more efficient when time is limited to 1 minute since
they are more likely to cover all regions. Wedge size
N = 200 seems a good compromise overall for finding
high-quality solutions quickly. Smaller wedge sizes re-
sulted in better solutions in the long run (to a point).

Alternative Algorithms Figure 9 presents the solu-
tion quality of the alternative algorithm SPASD(LNS)
and MPASD(LNS) on RC1.104. Algorithm
SPASD(LNS) is clearly dominated as soon as 2.5 min-
utes or more are available. It even becomes worse

Minutes

Figure 8: Impact of the Wedge Size N on RC1_10.5.

than LNS after 10 minutes, which never happens for
RASD(LNS) even after an hour. When only one
minute of CPU time is available, SPASD(LNS) per-
forms well, because it is guaranteed to see all customers,
which is not necessarily the case for RASD(LNS), in-
dicating that using SPASD(LNS) as a starting point is
probably a good idea. MPASD(LNS) is typically close
to, but dominated by, RASD(LNS), indicating there
is little advantage to being systematic here.

Vehicle Reduction As mentioned earlier, vehicle re-
duction is generally much faster than the minimization
of travel distance and high-quality solutions are gener-
ally reached much more quickly. However, VRPTW de-
couplings also improves this first phase of the algorithm
under tight time constraints. Figure 10 examplifies this
behavior whenever simulated annealing or an ejection
chain algorithm is used in the first phase. What is inter-
esting here is that the RASD scheme behaves similarly
regardless of the underlying optimization algorithm.

RC1_10_4

60000 1
58000 +—

56000 +—

E 54000

b | * SPASD
S 52000 1 ~m-RASD
3 (
% s0000 L\ -o-LNS

\ —o—MPASD

© 48000
4

< 46000 JR‘ '\
44000 ~2 &
B e m—
0 10 20 30 40 5

42000

0 60
Minutes

Figure 9: Performance of Alternative Algorithms.

RC1_10_3

© ©
[<I. S
o o

|
1

—+—RASD(EC)
~m-RASD(SA)
—A-LNS

Average Vehicles
8
o
|

Minutes

Figure 10: Decouplings for Vehicle Reduction.

Related Work

There are literally hundreds of papers discussing ve-
hicle routing problems and their variations. See
(Cordeau et al. 2001; Braysy & Gendreau 2005a;
2005b) for recent surveys. Almost all papers focus
on problems of relatively small size which, as men-
tioned earlier, are already extremely difficult. Unfor-
tunately, many of the proposed techniques do not scale
well and some recent papers specifically address large-
scale problems. (Bouthillier, Crainic, & Kropf 2005;
Bouthillier & Crainic 2005) use parallel computation for
scalability. Their main contribution is an architecture
allowing different search strategies to run in parallel and
to communicate their progress. Their experimental re-
sults are not competitive, probably due the simplicity
of search strategies used. Their approach can also be
thought of as a decomposition of the search strategy,
whereas the RASD scheme relies on problem decompo-
sition. To date, the most successful approach for solving
large-scale VRPTWs is an advanced evolutionary tech-
nique (Mester & Braysy 2005) building upon the success
of earlier algorithms (e.g., (Braysy, Dullaert, & Gen-
dreau 2004; Homberger & Gehring 1999)). The main
innovation in (Mester & Braysy 2005) are the incorpora-
tion of sophisticated diversification schemes (e.g., using
guided local search) into an evolutionary framework.
It is useful to relate the RASD to the approach in
(Hunsberger 2002) which impose specific temporal con-
straints to obtain decouplings. RASD uses spatial de-
couplings that constrain specific subsets of customers
to be served by designated vehicles. Moreover, the use

of decoupling is fundamentally different. The idea is to
iteratively obtain new decouplings to optimize an exist-
ing plan by re-optimizing subproblems. This use of de-
couplings also contrast with traditional decomposition
techniques in constraint satisfaction (Dechter 2003).

It is important to contrast LNS (Shaw 1998) and the
RASD scheme. In LNS, the basic step consists of re-
moving related customers from a plan ¢ and to rein-
sert them in ¢ using an optimization algorithm. The
RASD scheme can also be thought of as removing re-
lated customers with a fundamental difference: the re-
moved customers defines a VRPTW subproblem of (sig-
nificantly) smaller size which can solved independently.
This is critical for finding high-quality solution quickly.
Obviously, the two approaches are synergetic since our
results are obtained using RASD(LNS).

Conclusion

This paper proposes a randomized adaptive spatial de-
coupling (RASD) scheme for producing high-quality
solutions to large-scale VRPTWs quickly. Based on the
current plan, the RASD scheme repeatedly and adap-
tively obtains random spatial VRPTW decouplings
which are re-optimized and re-inserted in the plan. Ex-
perimental results on hard instances with 1,000 cus-
tomers show that the RASD scheme, together with
LNS, significantly improves the quality of the solutions
under time constraints, while also producing new best
solutions when allowed to run for about an hour.

References

Bouthillier, A. L., and Crainic, T. 2005. A Cooperative
Parallel Meta-Heuristic for the VRPTW. C&OR 32.

Bouthillier, A. L.; Crainic, T.; and Kropf, P. 2005. A
Guided Cooperative Search for the VRPTW. IEEFE Intel-
ligent Systems 20 (4):36-42.

Braysy, O., and Gendreau, M. 2005a. VRPTW Part I:
Route Construction and Local Search Algorithms. Trans-
portation Science 39:104—118.

Braysy, O., and Gendreau, M. 2005b. VRPTW, Part II:
Metaheuristics. Transportation Science 39:119-139.
Braysy, O.; Dullaert, W.; and Gendreau, M. 2004. Evolu-

tionary Algorithms for the VRPTW. Journal of Heuristics
20:587-611.

Cordeau, J.-F.; Desaulniers, G.; Desrosiers, J.; Solomon,
M.; and Soumis, F. 2001. The VRPTW. The Vehicle
Routing Problem: SIAM Monographs on Discrete Mathe-
matics and Applications 157-194.

Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.

Homberger, J., and Gehring, H. 1999. Two Evolutionary
Metaheuristics for the VRPTW. INFOR 37:297-318.
Hunsberger, L. 2002. Algorithms for a Temporal Decou-
pling Problem in Multi-Agent Planning. In AAAI’02.
Mester, D., and Braysy, O. 2005. Active Guided Evolution
Strategies for Large Scale VRPTWs. C6OR 32:1593-1614.
Shaw, P. 1998. Using Constraint Programming and Local
Search Methods to Solve VRPs. In CP’98, 417-431.

